论文标题
ETAP:间歇性计划的能源感知的时间分析
ETAP: Energy-aware Timing Analysis of Intermittent Programs
论文作者
论文摘要
能源收集无电池的嵌入式设备仅依赖于可实现独立和可持续的物联网应用的环境能量收获。当收获的环境能源在其能源储层中的收获环境能量足以突然操作和停止执行(并开始充电)时,这些设备执行程序。这些间歇性程序在不同的能量条件,硬件配置和程序结构下具有不同的时序行为。本文介绍了间歇性计划(ETAP)的能源感知的时间分析,这是一种概率符号执行方法,可在编译时分析间歇性程序的时间和能量行为。 ETAP象征性地执行给定的程序,同时需要考虑周围能源和动态能源消耗的时间和能源成本模型。我们在几个间歇性程序上评估了ETAP,并将编译时间分析结果与真实硬件的执行进行了比较。结果表明,与手动测试相比,ETAP的归一化预测准确性为99.5%,并且至少将时间分析加快了至少两个数量级。
Energy harvesting battery-free embedded devices rely only on ambient energy harvesting that enables stand-alone and sustainable IoT applications. These devices execute programs when the harvested ambient energy in their energy reservoir is sufficient to operate and stop execution abruptly (and start charging) otherwise. These intermittent programs have varying timing behavior under different energy conditions, hardware configurations, and program structures. This paper presents Energy-aware Timing Analysis of intermittent Programs (ETAP), a probabilistic symbolic execution approach that analyzes the timing and energy behavior of intermittent programs at compile time. ETAP symbolically executes the given program while taking time and energy cost models for ambient energy and dynamic energy consumption into account. We evaluated ETAP on several intermittent programs and compared the compile-time analysis results with executions on real hardware. The results show that ETAP's normalized prediction accuracy is 99.5%, and it speeds up the timing analysis by at least two orders of magnitude compared to manual testing.