论文标题

极度最小的坦纳系统III:路径图和稀疏配置

Strongly minimal Steiner Systems III: Path graphs and sparse configurations

论文作者

Baldwin, John T.

论文摘要

我们引入了一种统一的证明方法,以获得以下结果。对于以下条件的{\ em每个},有$ 2^{\ aleph_0} $ steiner系统的家族,满足该条件:i)定理〜2.2.4 :(扩展\ cite \ cite {chicoetal})每个steiner triple triple System均为$ \ infty $ sparse,并且具有完美的路径图形,但没有完美的路径; ii)(定理〜5.4.2 :(扩展\ cite {cameronwebb})每个steiner $ k $ - 系统(对于$ k = p^n $)是$ 2 $ - 传输,并具有统一的路径图(仅限的循环); iii); iii)theorem〜2.1.5:(extected \ 2.1.5 :(扩展\ cite) (反点数); iv)定理〜3.6具有明确的准集团结构。在每种情况下,家庭的所有成员都满足相同的完全最小的理论,并且它具有$ \ aleph_0 $可计数的模型和每个不可数的红衣主教的一种模型。

We introduce a uniform method of proof for the following results. For {\em each} of the following conditions, there are $2^{\aleph_0}$ families of Steiner systems, satisfying that condition: i) Theorem~2.2.4: (extending \cite{Chicoetal}) each Steiner triple system is $\infty$-sparse and has a uniform but not perfect path graph; ii) (Theorem~5.4.2: (extending \cite{CameronWebb}) each Steiner $k$-system (for $k=p^n$) is $2$-transitive and has a uniform path graph (infinite cycles only); iii) Theorem~2.1.5: (extending \cite{Fujiwaramitre}, each is anti-Pasch (anti-mitre); iv) Theorem~3.6 has an explicit quasi-group structure. In each case all members of the family satisfy the same complete strongly minimal theory and it has $\aleph_0$ countable models and one model of each uncountable cardinal.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源