论文标题

压力眼:通过无接触成像进行床内接触压力估算

Pressure Eye: In-bed Contact Pressure Estimation via Contact-less Imaging

论文作者

Liu, Shuangjun, Ostadabbas, Sarah

论文摘要

计算机视觉在解释图像的语义含义方面取得了巨大的成功,但是估计对象的基本(非视觉)物理特性通常仅限于其批量值,而不是重建密集的图。在这项工作中,我们介绍了压力眼(PEYE)方法,以估计人体与她所躺着的表面之间的接触压力,直接从视觉信号直接通过视觉信号分辨率。 PEYE方法最终可以使床结合患者的压力溃疡的预测和早期检测,这目前取决于使用昂贵的压力垫。我们的PEYE网络以双重编码共享解码形式配置,以融合视觉提示和一些相关的物理参数,以重建高分辨率压力图(PMS)。我们还基于天真的贝叶斯假设提出了一种像素的重新采样方法,以进一步提高PM回归性能。还提出了针对感应估计精度评估的正确传感(PC)的百分比,这为在不同误差公差下的性能评估提供了另一种观点。我们通过一系列广泛的实验测试了我们的方法,使用多模式传感技术在躺在床上时收集102名受试者的数据。个人的高分辨率接触压力数据可以从其RGB或长波长红外(LWIR)图像中估算为91.8%和91.2%的估计精度,$ pcs_ {efs0.1} $标准,在相关图像回归/翻译任务中优于目前的最终方法。

Computer vision has achieved great success in interpreting semantic meanings from images, yet estimating underlying (non-visual) physical properties of an object is often limited to their bulk values rather than reconstructing a dense map. In this work, we present our pressure eye (PEye) approach to estimate contact pressure between a human body and the surface she is lying on with high resolution from vision signals directly. PEye approach could ultimately enable the prediction and early detection of pressure ulcers in bed-bound patients, that currently depends on the use of expensive pressure mats. Our PEye network is configured in a dual encoding shared decoding form to fuse visual cues and some relevant physical parameters in order to reconstruct high resolution pressure maps (PMs). We also present a pixel-wise resampling approach based on Naive Bayes assumption to further enhance the PM regression performance. A percentage of correct sensing (PCS) tailored for sensing estimation accuracy evaluation is also proposed which provides another perspective for performance evaluation under varying error tolerances. We tested our approach via a series of extensive experiments using multimodal sensing technologies to collect data from 102 subjects while lying on a bed. The individual's high resolution contact pressure data could be estimated from their RGB or long wavelength infrared (LWIR) images with 91.8% and 91.2% estimation accuracies in $PCS_{efs0.1}$ criteria, superior to state-of-the-art methods in the related image regression/translation tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源