论文标题
具有热控制的声学调制器的光束指向稳定
Beam pointing stabilization of an acousto-optic modulator with thermal control
论文作者
论文摘要
由声学调制器(AOM)产生的衍射光束被广泛用于各种光学实验,其中一些需要高角度稳定性,并具有光功率的时间调制。通常,在没有射频补偿的伺服系统的情况下,很难在被动设置中实现角度稳定性和高功率调制。在这里,我们提出了一种仅使用AOM晶体的热管理来抑制角漂移和指向噪声的方法。我们分析角漂移对折射率变化的依赖性,并发现角漂移对温度梯度非常敏感,这可能会诱导AOM晶体内部的折射率梯度。它使我们想起,可以通过小心地重叠零温度梯度区域与声学相互作用区域的位置来显着抑制这种角漂移。我们实施了水冷却设置,并发现在热瞬变期间,AOM的角漂移降低了100倍,并且角度噪声也被抑制至非冷却情况的1/3。应该强调的是,这种热控制方法是抑制衍射和垂直到划分方向上的光束漂移的一般。由该角度漂移 - 温度模型确定的1064 nm的二氧化物晶体的折射率热系数为16 $ \ times $ 10 $^{ - 6} $ k $^{ - 1} $一致。这种热控制技术为对强度坡道的需求提供了潜在的应用程序。
Diffraction beams generated by an acousto-optic modulator (AOM) are widely used in various optical experiments, some of which require high angular stability with the temporal modulation of optical power. Usually, it is difficult to realize both angular stability and high-power modulation in a passive setup without a servo system of radio-frequency compensation. Here, we present a method to suppress the angular drift and pointing noise only with the thermal management of the AOM crystal. We analyze the dependence of the angular drift on the refractive index variation, and find that the angular drift is very sensitivity to the temperature gradient which could induce the refractive index gradient inside the AOM crystal. It reminds us such angular drift could be significantly suppressed by carefully overlapping the zero temperature gradient area with the position of the acousto-optic interaction zone. We implement a water-cooling setup, and find that the angular drift of an AOM is reduced over 100 times during the thermal transient, and the angular noise is also suppressed to 1/3 of the non-cooled case. It should be emphasized that this thermal control method is a general to suppress the beam drift in both the diffraction and the perpendicular-to-diffraction directions. The refractive index thermal coefficient of tellurium dioxide crystal at 1064 nm determined by this angular drift-temperature model is 16$\times$10$^{-6}$ K$^{-1}$ consistent with previous studies. This thermal control technique provides potential applications for optical trapping and remote sensoring that demand for intensity ramps.