论文标题

基于稀疏回归的单变量表达式的符号数字整合

Symbolic-Numeric Integration of Univariate Expressions based on Sparse Regression

论文作者

Iravanian, Shahriar, Martensen, Carl Julius, Cheli, Alessandro, Gowda, Shashi, Jain, Anand, Ma, Yingbo, Rackauckas, Chris

论文摘要

大多数计算机代数系统(CAS)支持符号集成为核心功能。大多数集成软件包都使用启发式代数和基于规则的(集成表)方法的组合。在本文中,我们提出了一种混合(符号数)方法,以计算单变量表达式的无限积分。这项工作的主要动机是在现代CAS(Sciml的象征性操纵软件包,Sciml的象征性操纵软件包,朱莉娅编程语言的科学机器学习生态系统)中添加符号集成功能,该功能主要用于数字和机器学习应用,并且与传统CAS具有不同的功能。我们方法的符号部分是基于候选术语的产生(从同型操作员理论借用)与基于基本CAS提供的基于规则的表达转换的组合。数字部分基于稀疏回归,这是非线性动力学(SINDY)技术稀疏识别的组成部分。我们表明,该系统只能使用几十个基本集成规则来解决各种常见的集成问题。

Most computer algebra systems (CAS) support symbolic integration as core functionality. The majority of the integration packages use a combination of heuristic algebraic and rule-based (integration table) methods. In this paper, we present a hybrid (symbolic-numeric) methodology to calculate the indefinite integrals of univariate expressions. The primary motivation for this work is to add symbolic integration functionality to a modern CAS (the symbolic manipulation packages of SciML, the Scientific Machine Learning ecosystem of the Julia programming language), which is mainly designed toward numerical and machine learning applications and has a different set of features than traditional CAS. The symbolic part of our method is based on the combination of candidate terms generation (borrowed from the Homotopy operators theory) with rule-based expression transformations provided by the underlying CAS. The numeric part is based on sparse-regression, a component of Sparse Identification of Nonlinear Dynamics (SINDy) technique. We show that this system can solve a large variety of common integration problems using only a few dozen basic integration rules.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源