论文标题
分布式大规模MIMO C-RAN的分布式尺寸降低有限的fronthaul容量
Distributed Dimension Reduction for Distributed Massive MIMO C-RAN with Finite Fronthaul Capacity
论文作者
论文摘要
使用大量服务天线为分布式MIMO C-RAN带来了各种性能优势,但是相应的高领前数据负载在有限的Fronthaul容量有限的实用系统中可能会出现问题。在这项工作中,我们建议在每个远程无线电头(RRH)本地应用降低损失尺寸的使用,以减少这种情况。我们首先考虑上行链路,并且每个RRH将线性尺寸还原过滤器应用于其多安顿接收的信号矢量的情况。结果表明,在关节互信息标准下,最佳尺寸还原过滤器由条件karhunen-loeve变换的变体给出,并使用块坐标上升发现了一个固定点。然后对这些过滤器进行修改,以便每个RRH只能使用其自己的瞬时通道和网络慢褪色系数来以分散的方式计算其自身的尺寸降低过滤器。然后,我们证明在TDD系统中,这些降低过滤器可以作为两阶段降低尺寸下行链路预编码方案的一部分进行重新使用。分析和数值结果表明,所提出的方法可以显着降低上行链路和下行的前链路交通,同时几乎没有造成MIMO性能的损失。
The use of a large excess of service antennas brings a variety of performance benefits to distributed MIMO C-RAN, but the corresponding high fronthaul data loads can be problematic in practical systems with limited fronthaul capacity. In this work we propose the use of lossy dimension reduction, applied locally at each remote radio head (RRH), to reduce this fronthaul traffic. We first consider the uplink, and the case where each RRH applies a linear dimension reduction filter to its multi-antenna received signal vector. It is shown that under a joint mutual information criteria, the optimal dimension reduction filters are given by a variant of the conditional Karhunen-Loeve transform, with a stationary point found using block co-ordinate ascent. These filters are then modified such that each RRH can calculate its own dimension reduction filter in a decentralised manner, using knowledge only of its own instantaneous channel and network slow fading coefficients. We then show that in TDD systems these dimension reduction filters can be re-used as part of a two-stage reduced dimension downlink precoding scheme. Analysis and numerical results demonstrate that the proposed approach can significantly reduce both uplink and downlink fronthaul traffic whilst incurring very little loss in MIMO performance.