论文标题
用谎言烹饪意大利面
Cooking pasta with Lie groups
论文作者
论文摘要
我们将(测量)的Skyrme模型扩展到全球Isospin Group(通常被认为为$ SU(n)$)的情况下,是一个通用的紧凑型连接lie Group $ g $。我们从组理论的角度分析了(3+1)维度中的相应字段方程。可以通过分析构建几种解决方案,并由三维简单谎言组的嵌入到$ g $中,以通用的不可约表示。这些溶液代表了低能核物质的所谓核面食状态。我们采用特殊谎言组的所有三个维度谎言子组的Dynkin显式分类来对所有此类解决方案进行分类$ G $是一个非凡的简单谎言组,并赋予所有成分以明确构建它们。例如,我们为$ g = g_ {2} $构造了显式解决方案。然后,我们将ANSATZ扩展到将Skyrme字段的最小耦合包括在$ U(1)$ GAUGE字段中。我们将拓扑电荷的定义扩展到该病例,然后将注意力集中在电磁病例上。在仪表场上施加了“自由军条件”后,完全耦合到Abelian量规场的测量值的Skyrme模型的完整耦合场方程将减小到仅一条线性的线性驱动器,使其保持生命。我们讨论了这种颂歌属于(Whittaker-)山和Mathieu类型的案例。
We extend the (gauged) Skyrme model to the case in which the global isospin group (which usually is taken to be $SU(N)$) is a generic compact connected Lie group $G$. We analyze the corresponding field equations in (3+1) dimensions from a group theory point of view. Several solutions can be constructed analytically and are determined by the embeddings of three dimensional simple Lie groups into $G$, in a generic irreducible representation. These solutions represent the so-called nuclear pasta state configurations of nuclear matter at low energy. We employ the Dynkin explicit classification of all three dimensional Lie subgroups of exceptional Lie group to classify all such solutions in the case $G$ is an exceptional simple Lie group, and give all ingredients to construct them explicitly. As an example, we construct the explicit solutions for $G=G_{2}$. We then extend our ansatz to include the minimal coupling of the Skyrme field to a $U(1)$ gauge field. We extend the definition of the topological charge to this case and then concentrate our attention to the electromagnetic case. After imposing a "free force condition" on the gauge field, the complete set of coupled field equations corresponding to the gauged Skyrme model minimally coupled to an Abelian gauge field is reduced to just one linear ODE keeping alive the topological charge. We discuss the cases in which such ODE belongs to the (Whittaker-)Hill and Mathieu types.