论文标题
霸天虎:损坏的变形金刚在联邦学习中违反了语言模型的隐私
Decepticons: Corrupted Transformers Breach Privacy in Federated Learning for Language Models
论文作者
论文摘要
联合学习(FL)的中心宗旨是训练模型而无需集中用户数据,是隐私。但是,以前的工作表明,FL中使用的梯度更新可能会泄漏用户信息。尽管FL的最大工业用途是用于文本应用程序(例如,击键预测),但几乎所有对FL隐私的攻击都集中在简单的图像分类器上。我们提出了一种新颖的攻击,该攻击通过部署恶意参数向量来揭示私人用户文本,即使在迷你批次,多个用户和长序列中也成功。与以前对FL的攻击不同,攻击利用了变压器体系结构和令牌嵌入的特征,分别提取令牌和位置嵌入以检索高保真文本。这项工作表明,在历史上对隐私攻击具有抵抗力的文本上的FL比以前想象的要脆弱得多。
A central tenet of Federated learning (FL), which trains models without centralizing user data, is privacy. However, previous work has shown that the gradient updates used in FL can leak user information. While the most industrial uses of FL are for text applications (e.g. keystroke prediction), nearly all attacks on FL privacy have focused on simple image classifiers. We propose a novel attack that reveals private user text by deploying malicious parameter vectors, and which succeeds even with mini-batches, multiple users, and long sequences. Unlike previous attacks on FL, the attack exploits characteristics of both the Transformer architecture and the token embedding, separately extracting tokens and positional embeddings to retrieve high-fidelity text. This work suggests that FL on text, which has historically been resistant to privacy attacks, is far more vulnerable than previously thought.