论文标题
MO2C可能在弹性,键合,光电和热物理特性的AB-Initio研究中探索的正交和六角形阶段的可能应用
Possible applications of Mo2C in the orthorhombic and hexagonal phases explored via ab-initio investigations of elastic, bonding, optoelectronic and thermophysical properties
论文作者
论文摘要
二元碳化物展示了适合多种应用和多种应用的有吸引力的物理特性。在本研究中,我们探索了结构特性,电子结构,弹性常数,声学行为,声子分散,光学特性,以及通过使用密度函数理论(DFT)详细详细介绍二进制正交和六边形MO2C化合物的二元正交和六边形MO2C化合物的各种热物理性能。在两个对称性中,计算出的基态晶格参数与可用的实验结果非常吻合。计算出的电子带结构,状态的密度以及MO2C在两种结构中的光学特性都揭示了金属特征。与六边形相比,正骨晶体显示出更高水平的机械和热各向异性。弹性常数和声子分散计算表明,在这两个结构中,MO2C在机械上且动态稳定。一项综合的机械和热物理研究表明,这两个阶段都具有较高的结构稳定性,合理的可加工性,延性性,高硬度,低压性,高debye温度和高熔化温度。此外,状态的电子能量密度,电子密度分布,弹性特性和mulliken键种群分析表明,所考虑的结构包括具有离子和共价贡献的混合键合特性。高反射率在宽光谱范围内使化合物适合作为反射涂层。两种结构都是紫外线辐射的有效吸收器。折射率在可见范围内的折射率很高。
Binary carbides demonstrate attractive set of physical properties that are suitable for numerous and diverse applications. In the present study, we have explored the structural properties, electronic structures, elastic constants, acoustic behaviors, phonon dispersions, optical properties, and various thermophysical properties of binary orthogonal and hexagonal Mo2C compounds in details via first-principles calculations using the density functional theory (DFT). The calculated ground state lattice parameters in both the symmetries are in excellent agreement with available experimental results. The calculated electronic band structure, density of states, and optical properties of Mo2C in both structures reveal metallic features. The orthorhombic crystal shows higher level mechanical and thermal anisotropy compared to that in the hexagonal phase. The elastic constants and phonon dispersion calculations show that, in both structures, Mo2C is mechanically and dynamically stable. A comprehensive mechanical and thermophysical study shows that both phases possess high structural stability, reasonably good machinability, ductile nature, high hardness, low compressibility, high Debye temperature and high melting temperature. Moreover, the electronic energy density of states, electron density distribution, elastic properties, and Mulliken bond population analyses indicate that the structures under consideration consist of mixed bonding characteristics with ionic and covalent contributions. High reflectivity over wide spectral range makes the compound suitable as reflecting coating. Both the structures are efficient absorber of ultraviolet radiation. The refractive indices are quite high in the infrared to visible range.