论文标题

贝叶斯优化多目标混合变量问题

Bayesian Optimization For Multi-Objective Mixed-Variable Problems

论文作者

Sheikh, Haris Moazam, Marcus, Philip S.

论文摘要

在许多工程和科学领域中,优化多个混合变量,昂贵的黑盒问题的多个非首选目标很重要。这些问题的昂贵,嘈杂,黑盒的性质使它们成为贝叶斯优化(BO)的理想候选者。然而,由于BO的基本光滑的高斯流程替代模型,混合变量和多目标问题是一个挑战。当前的多目标BO算法无法处理可混合变量的问题。我们提出了MixMobo,这是第一个用于此类问题的混合变量,多目标贝叶斯优化框架。使用MixMobo,可以有效地找到用于多目标,混合变量设计空间的最佳帕累托 - 前面,同时确保各种解决方案。该方法足够灵活地包含不同的内核和采集功能,包括其他作者为混合变量或多目标问题开发的函数。我们还提出了Hedgemo,这是一种修改后的对冲策略,该策略使用采集功能的投资组合来解决多目标问题。我们提出了新的采集功能,SMC。我们的结果表明,MixMobo在合成问题上针对其他混合变量算法的表现良好。我们将MixMobo应用于建筑材料的实际设计,并表明我们的最佳设计是经过实验性制造和验证的,其应变能密度$ 10^4 $ $ 10^4 $倍,比现有结构高。

Optimizing multiple, non-preferential objectives for mixed-variable, expensive black-box problems is important in many areas of engineering and science. The expensive, noisy, black-box nature of these problems makes them ideal candidates for Bayesian optimization (BO). Mixed-variable and multi-objective problems, however, are a challenge due to BO's underlying smooth Gaussian process surrogate model. Current multi-objective BO algorithms cannot deal with mixed-variable problems. We present MixMOBO, the first mixed-variable, multi-objective Bayesian optimization framework for such problems. Using MixMOBO, optimal Pareto-fronts for multi-objective, mixed-variable design spaces can be found efficiently while ensuring diverse solutions. The method is sufficiently flexible to incorporate different kernels and acquisition functions, including those that were developed for mixed-variable or multi-objective problems by other authors. We also present HedgeMO, a modified Hedge strategy that uses a portfolio of acquisition functions for multi-objective problems. We present a new acquisition function, SMC. Our results show that MixMOBO performs well against other mixed-variable algorithms on synthetic problems. We apply MixMOBO to the real-world design of an architected material and show that our optimal design, which was experimentally fabricated and validated, has a normalized strain energy density $10^4$ times greater than existing structures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源