论文标题
部分可观测时空混沌系统的无模型预测
Lasing and counter-lasing phase transitions in a cavity QED system
论文作者
论文摘要
我们研究了自发发射和不连贯的原子泵对不平衡DICKE模型非线性半经典动力学的影响 - Dicke模型的概括,该模型具有共同和反旋转交互项的独立耦合强度。除了无处不在的上级行为外,dicke模型众所周知,加上自发发射的添加结合了强烈的反旋转术语的存在,也会产生类似激光的行为,称为反射。这些状态以稳定的周期轨道出现在半经典模型中。我们对不平衡的Dicke模型中的反射式出现进行全面的动力学分析,以实现强大的空腔耗散,因此可以绝热地消除空腔场以产生有效的Lipkin-Meshkov-Glick(LMG)模型。如果共旋转相互作用的耦合强度很小,则反射击阶段通过脱离驱传状态的HOPF分叉出现。我们发现,如果自发发射的速率很小,则可能导致复兴的超级脉冲。但是,如果共旋转耦合较大,则必须通过稳态超级阶段出现反射阶段。这样的过渡是分别驱动超级和反态的连贯和不相干过程的竞争的结果。我们观察到两者之间出人意料的复杂过渡,这与薄过渡参数区域的混沌吸引子形成有关。
We study the effect of spontaneous emission and incoherent atomic pumping on the nonlinear semiclassical dynamics of the unbalanced Dicke model -- a generalization of the Dicke model that features independent coupling strengths for the co- and counter-rotating interaction terms. As well as the ubiquitous superradiant behavior the Dicke model is well-known for, the addition of spontaneous emission combined with the presence of strong counter-rotating terms creates laser-like behavior termed counter-lasing. These states appear in the semiclassical model as stable periodic orbits. We perform a comprehensive dynamical analysis of the appearance of counter-lasing in the unbalanced Dicke model subject to strong cavity dissipation, such that the cavity field can be adiabatically eliminated to yield an effective Lipkin-Meshkov-Glick (LMG) model. If the coupling strength of the co-rotating interactions is small, then the counter-lasing phase appears via a Hopf bifurcation of the de-excited state. We find that if the rate of spontaneous emission is small, this can lead to resurgent superradiant pulses. However, if the co-rotating coupling is larger, then the counter-lasing phase must emerge via the steady-state superradiant phase. Such a transition is the result of the competition of the coherent and incoherent processes that drive superradiance and counter-lasing, respectively. We observe a surprisingly complex transition between the two, associated with the formation of a chaotic attractor over a thin transitional parameter region.