论文标题
在强大空间上的偶联$ h^{2} $
Conjugations on the Hardy space $H^{2}$
论文作者
论文摘要
可分离的复杂的Hilbert Space $ \ Mathcal H $上的共轭$ C $是一个静电和参与的反激操作员。在此注释中,我们表征了磁盘上Hardy-Hilbert Space上的所有共轭$ H^{2} $。此外,我们还表征了复杂的对称toeplitz运算符,并具有特殊类型的这些共轭。
A conjugation $C$ on a separable complex Hilbert space $\mathcal H$ is an antilinear operator that is isometric and involutive. In this notes, we characterize all conjugations on the Hardy-Hilbert space $H^{2}$ over the disk. In addition, we characterize complex symmetric Toeplitz operators with a special type of these conjugations.