论文标题
使用多任务大脑年龄预测的深度学习预测,在3D脑MRI中无监督的异常检测
Unsupervised Anomaly Detection in 3D Brain MRI using Deep Learning with Multi-Task Brain Age Prediction
论文作者
论文摘要
大脑磁共振图像(MRIS)中的病变检测仍然是一项具有挑战性的任务。 MRI通常由域专家读取和解释,这是一个繁琐且耗时的过程。最近,具有深度学习的大脑MRI中无监督的异常检测(UAD)显示出令人鼓舞的结果,可以提供快速的初步评估。到目前为止,这些方法仅依靠健康的脑解剖结构的视觉外观进行异常检测。脑发育异常的另一个生物标志物是大脑年龄与年代年龄之间的偏差,这与UAD相结合。我们建议在3D Brain MRI中对UAD进行深入学习,以考虑额外的年龄信息。我们将培训期间年龄信息的价值分析为额外的异常得分,并系统地研究了几种体系结构概念。基于我们的分析,我们为具有多任务年龄预测的UAD提出了一种新颖的深度学习方法。我们使用1735名健康受试者的临床T1加权MRIS和公开可用的Brats 2019数据集用于我们的研究。我们的新颖方法可显着提高UAD的性能,而AUC为92.60%,而使用以前的没有年龄信息的AUC得分为84.37%。
Lesion detection in brain Magnetic Resonance Images (MRIs) remains a challenging task. MRIs are typically read and interpreted by domain experts, which is a tedious and time-consuming process. Recently, unsupervised anomaly detection (UAD) in brain MRI with deep learning has shown promising results to provide a quick, initial assessment. So far, these methods only rely on the visual appearance of healthy brain anatomy for anomaly detection. Another biomarker for abnormal brain development is the deviation between the brain age and the chronological age, which is unexplored in combination with UAD. We propose deep learning for UAD in 3D brain MRI considering additional age information. We analyze the value of age information during training, as an additional anomaly score, and systematically study several architecture concepts. Based on our analysis, we propose a novel deep learning approach for UAD with multi-task age prediction. We use clinical T1-weighted MRIs of 1735 healthy subjects and the publicly available BraTs 2019 data set for our study. Our novel approach significantly improves UAD performance with an AUC of 92.60% compared to an AUC-score of 84.37% using previous approaches without age information.