论文标题
减轻粒子背景对雅典娜广场成像仪的影响
Mitigating the effects of particle background on the Athena Wide-Field Imager
论文作者
论文摘要
在雅典娜上飞行的宽阔田野成像仪(WFI)将在下一个研究炎热而充满活力的宇宙的下一个时代。 WFI对微弱的,弥漫源的观察将受到高能颗粒产生的背景的不确定性的限制。这些颗粒可容易地识别出“宇宙射线轨道”,以及来自二次光子的信号和由粒子与仪器相互作用产生的电子。来自这些次要的信号与光学量聚焦的X射线相同,并且在不消除这些珍贵光子的情况下不能过滤。作为了解WFI背景的更大努力的一部分,我们在这里提出了对背景还原技术的研究结果,该技术利用了宇宙射线粒子轨迹和次要事件之间的空间相关性。我们使用Geant4模拟来生成逼真的粒子背景,将其整理成模拟的WFI帧,并以与预期的飞行和地面软件相似的方式处理这些框架,以产生仅包含粒子背景的WFI观察。所研究的技术,自我反协调或囊,然后选择性地过滤探测器的区域围绕粒子轨迹,将WFI变成其自身的抗合性检测器。我们表明,SAC有效地改善了对微弱的,分散源的观察的系统不确定性,但由于信号减少而导致的统计不确定性成本。如果将足够的像素脉冲高度信息用于每个框架的地面,则可以根据科学目标选择性地应用此技术,从而在不影响其他科学的数据质量的情况下提供灵活性。此处介绍的结果与任何未来的基于硅的像素化X射线成像检测器有关,并且可以使WFI和类似仪器能够探测真正淡淡的X射线表面亮度。
The Wide Field Imager (WFI) flying on Athena will usher in the next era of studying the hot and energetic Universe. WFI observations of faint, diffuse sources will be limited by uncertainty in the background produced by high-energy particles. These particles produce easily identified "cosmic-ray tracks" along with signals from secondary photons and electrons generated by particle interactions with the instrument. The signal from these secondaries is identical to the X-rays focused by the optics, and cannot be filtered without also eliminating these precious photons. As part of a larger effort to understand the WFI background, we here present results from a study of background-reduction techniques that exploit the spatial correlation between cosmic-ray particle tracks and secondary events. We use Geant4 simulations to generate a realistic particle background, sort this into simulated WFI frames, and process those frames in a similar way to the expected flight and ground software to produce a WFI observation containing only particle background. The technique under study, Self Anti-Coincidence or SAC, then selectively filters regions of the detector around particle tracks, turning the WFI into its own anti-coincidence detector. We show that SAC is effective at improving the systematic uncertainty for observations of faint, diffuse sources, but at the cost of statistical uncertainty due to a reduction in signal. If sufficient pixel pulse-height information is telemetered to the ground for each frame, then this technique can be applied selectively based on the science goals, providing flexibility without affecting the data quality for other science. The results presented here are relevant for any future silicon-based pixelated X-ray imaging detector, and could allow the WFI and similar instruments to probe to truly faint X-ray surface brightness.