论文标题

在多项式上保存非负矩阵的猜想的证明

Proof of a conjecture on polynomials preserving nonnegative matrices

论文作者

Loewy, Raphael

论文摘要

我们考虑在R [X]中的多项式,这些多项式将给定顺序的非负(元素角度)矩阵映射到自身中。令n为正整数,并定义p(n)= {p in r [x]:p(a)是非负(元素,元素),对于所有a,a n-by-n非负(元素wise)矩阵}。该集合在非负逆特征值问题中起作用。克拉克(Clark)和爸爸(Paparella)猜想p(n+1)严格包含在p(n)中。我们证明了这个猜想。

We consider polynomials in R[x] which map the set of nonnegative (element-wise) matrices of a given order into itself. Let n be a positive integer and define P(n)= {p in R[x] : p(A) is nonnegative (element-wise), for all A, A an n-by-n nonnegative (element-wise) matrix}. This set plays a role in the Nonnegative Inverse Eigenvalue Problem. Clark and Paparella conjectured that P(n+1) is strictly contained in P(n). We prove this conjecture.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源