论文标题
Rabinowitz动作在同核中起作用的梯度流动方程
The Gradient flow equation of Rabinowitz action functional in a symplectization
论文作者
论文摘要
Rabinowitz动作函数是负区域的Lagrange乘数功能,其功能与哈密顿量平均值给出的约束。在本说明中,我们表明,在符合性的情况下,Rabinowitz动作功能的梯度流量线与负面功能对约束的负区域的限制的梯度流量线之间存在一对一的对应关系。在附录中,我们解释了此结果背后的动机。也就是说,受限制的功能满足了CHAS-SULLIVAN的添加性,用于串联conlops,而Rabinowitz Action功能通常不做。
Rabinowitz action functional is the Lagrange multiplier functional of the negative area functional to a constraint given by the mean value of a Hamiltonian. In this note we show that on a symplectization there is a one-to-one correspondence between gradient flow lines of Rabinowitz action functional and gradient flow lines of the restriction of the negative area functional to the constraint. In the appendix we explain the motivation behind this result. Namely that the restricted functional satisfies Chas-Sullivan additivity for concatenation of loops which the Rabinowitz action functional does in general not do.