论文标题
在语义细分中的渐进学习持续的融合
Continual Attentive Fusion for Incremental Learning in Semantic Segmentation
论文作者
论文摘要
在过去的几年中,语义细分以及计算机视觉中的许多其他任务都受益于深度神经网络的进展,从而大大提高了性能。但是,经过基于梯度的技术训练的深层体系结构遭受了灾难性遗忘的困扰,这是在学习新任务时忘记以前学习的知识的趋势。为了制定抵制这种效果的策略,在过去几年中,增量学习方法越来越受欢迎。但是,语义分割的第一种增量学习方法直到最近才出现。尽管有效,但这些方法并不能说明像素级密集的预测问题的关键方面,即注意机制的作用。为了填补这一空白,在本文中,我们介绍了一种新颖的细心蒸馏方法,以减轻灾难性遗忘,同时考虑语义空间和频道级别的依赖性。此外,我们提出了一个{不断的细心融合}结构,该结构利用了从新任务和旧任务中学到的关注,同时学习新任务的功能。最后,我们还引入了一种新的策略来说明蒸馏损失中的背景类别,从而阻止了偏见的预测。我们通过对Pascal-Voc 2012和ADE20K进行广泛评估来证明我们的方法的有效性,并设定了新的最新状态。
Over the past years, semantic segmentation, as many other tasks in computer vision, benefited from the progress in deep neural networks, resulting in significantly improved performance. However, deep architectures trained with gradient-based techniques suffer from catastrophic forgetting, which is the tendency to forget previously learned knowledge while learning new tasks. Aiming at devising strategies to counteract this effect, incremental learning approaches have gained popularity over the past years. However, the first incremental learning methods for semantic segmentation appeared only recently. While effective, these approaches do not account for a crucial aspect in pixel-level dense prediction problems, i.e. the role of attention mechanisms. To fill this gap, in this paper we introduce a novel attentive feature distillation approach to mitigate catastrophic forgetting while accounting for semantic spatial- and channel-level dependencies. Furthermore, we propose a {continual attentive fusion} structure, which takes advantage of the attention learned from the new and the old tasks while learning features for the new task. Finally, we also introduce a novel strategy to account for the background class in the distillation loss, thus preventing biased predictions. We demonstrate the effectiveness of our approach with an extensive evaluation on Pascal-VOC 2012 and ADE20K, setting a new state of the art.