论文标题

线性时变和周期系统的分析

Analysis of Linear Time-Varying & Periodic Systems

论文作者

Fivel, Oren

论文摘要

本论文将浮点理论应用于分析线性周期性时变(LPTV)系统,该系统由依赖时间变量t的普通微分方程(ODE)系统表示,并且具有周期t> 0的系数矩阵。由平方周期性功能矩阵A(t)= a(t+t)表示的LPTV系统的过渡矩阵可以表示为平方周期函数矩阵p(t)= p(t+t)的乘积和rt的凸起的平方矩阵,其中r是恒定矩阵(独立于t)。尽管Floquet理论的有效性,但是当过渡矩阵φ_A(t,t_0)未知时,很难找到矩阵p(t)和r的分析闭合形式。从本质上讲,很难为LPTV系统找到分析解决方案(即其过渡矩阵的封闭形式)。研究结果表明,对于给定的周期性矩阵a(t)家族,我们可以比较将谐波乘积的函数(即,ω是偶数[奇数]表示中的含量[SINE]因子的一部分,或者在[奇数]表示中的含量[SINE]因子的一部分,或在复杂表示中的指示因子中的频率均与序列相关的频率(t)和R的相关性。时间不变的系统,该系统由零频率(ω= 0)定义。

This thesis applies Floquet theory to analyze linear periodic time-varying (LPTV) systems, represented by a system of ordinary differential equations (ODEs) that depend on a time variable t and have a matrix of coefficients with period T>0. The transition matrix of an LPTV system represented by a square periodic-function matrix A(t)=A(t+T) can be expressed as the product of a square periodic function matrix P(t)=P(t+T) and an exponentiated square matrix of the form Rt, where R is a constant matrix (independent of t). Despite the validity of Floquet theory, it is difficult to find an analytical closed form for the matrices P(t) and R when the transition matrix Φ_A (t,t_0 ) is unknown. In essence, it is difficult to find an analytical solution for an LPTV system (i.e., a closed form for its transition matrix). The research results show that for a given family of periodic matrices A(t), we can compare the powers of ω that multiply the harmonics (i.e., ω is part of the coefficients multiplying the cosine [sine] factors in even [odd] representations or of the exponential factors in complex representations) to determine the matrices P(t) and R. In addition, the results lead to relations between LPTV systems at frequency ω and the associated linear time-invariant system, which is defined by having zero frequency (ω=0).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源