论文标题
使用线性阈值模型分析社区意识的中心度度量
Analyzing Community-aware Centrality Measures Using The Linear Threshold Model
论文作者
论文摘要
靶向复杂网络中有影响力的节点可以固定或阻碍谣言,流行病和电动停电。由于社区在现实世界网络中很普遍,因此社区意识的中心度衡量了将此信息用于目标有影响力的节点。研究表明,它们与对社区结构不可知的经典措施相比有利。尽管扩散过程至关重要,但以前的研究主要考虑著名的易感感染的(SIR)流行病传播模型。这项工作使用流行的线性阈值(LT)传播模型研究了先前分析的一致性,该模型表征了我们现实生活中许多传播过程。我们对13个现实世界网络上的七个有影响力的社区意识中心度度量进行了比较分析。总体而言,结果表明,基于社区的调解人,通讯中心性和模块化活力优于其他措施。此外,基于社区的调解人在预算紧张的情况下更有效(即最初激活的节点的一小部分),而通信中心性和模块化活力的表现较好,而最初激活的节点的中等程度更高。
Targeting influential nodes in complex networks allows fastening or hindering rumors, epidemics, and electric blackouts. Since communities are prevalent in real-world networks, community-aware centrality measures exploit this information to target influential nodes. Researches show that they compare favorably with classical measures that are agnostic about the community structure. Although the diffusion process is of prime importance, previous studies consider mainly the famous Susceptible-Infected-Recovered (SIR) epidemic propagation model. This work investigates the consistency of previous analyses using the popular Linear Threshold (LT) propagation model, which characterizes many spreading processes in our real life. We perform a comparative analysis of seven influential community-aware centrality measures on thirteen real-world networks. Overall, results show that Community-based Mediator, Comm Centrality, and Modularity Vitality outperform the other measures. Moreover, Community-based Mediator is more effective on a tight budget (i.e., a small fraction of initially activated nodes), while Comm Centrality and Modularity Vitality perform better with a medium to a high fraction of initially activated nodes.