论文标题
PIP-X:在线反馈运动计划/在动态环境中使用不变漏斗
PiP-X: Online feedback motion planning/replanning in dynamic environments using invariant funnels
论文作者
论文摘要
计算动力学上可行的运动计划并随着环境的变化而立即修复它们是一个具有挑战性但相关的问题。我们建议使用有限的时间不变式套件-Funnels提出一种新颖的在线单质抽样重新规划算法-PIP-X。我们结合了基于抽样的方法,非线性系统分析和控制理论的概念,以创建一个单个框架,该框架可以为动态工作区中任何一般的非线性动力学系统重新分布反馈运动。 使用基于采样的方法构建体积漏斗环,然后通过计算其中最短路径子树来确定机器人配置到所需目标区域的最佳漏斗路径。使用Lyapunov级别的理论分析和正式量化轨迹的稳定性,可确保动力学可行性和保证的溶液路径的设定固定性。使用增量搜索技术和预先计算的运动主要库可确保我们的方法可用于在密集的混乱和动态环境中快速在线重新布线可控运动计划。 我们以增强的定向图形的形式将轨迹的遍历性和测序性表示,有助于我们利用基于图形的重新启动算法来有效地重新计算自然界的可行和可控制的运动计划。我们在迷宫和随机森林环境中的各种场景中验证了模拟的6DOF四极管平台上的方法。从重复实验中,我们根据算法 - 成功和遍历跨度的长度分析了性能。
Computing kinodynamically feasible motion plans and repairing them on-the-fly as the environment changes is a challenging, yet relevant problem in robot-navigation. We propose a novel online single-query sampling-based motion re-planning algorithm - PiP-X, using finite-time invariant sets - funnels. We combine concepts from sampling-based methods, nonlinear systems analysis and control theory to create a single framework that enables feedback motion re-planning for any general nonlinear dynamical system in dynamic workspaces. A volumetric funnel-graph is constructed using sampling-based methods, and an optimal funnel-path from robot configuration to a desired goal region is then determined by computing the shortest-path subtree in it. Analysing and formally quantifying the stability of trajectories using Lyapunov level-set theory ensures kinodynamic feasibility and guaranteed set-invariance of the solution-paths. The use of incremental search techniques and a pre-computed library of motion-primitives ensure that our method can be used for quick online rewiring of controllable motion plans in densely cluttered and dynamic environments. We represent traversability and sequencibility of trajectories together in the form of an augmented directed-graph, helping us leverage discrete graph-based replanning algorithms to efficiently recompute feasible and controllable motion plans that are volumetric in nature. We validate our approach on a simulated 6DOF quadrotor platform in a variety of scenarios within a maze and random forest environment. From repeated experiments, we analyse the performance in terms of algorithm-success and length of traversed-trajectory.