论文标题
在混合特征和应用中移动引理
Moving lemmas in mixed characteristic and applications
论文作者
论文摘要
本文在混合特征情况下包含新的几何定理。我们使用这些几何定理得出了一系列的共同体后果。其中,二次空间的各向同性结果是二次空间的纯度结果,这是针对Azumaya代数的特殊线性组的Grothendieck-Serre猜想的结果。证明了函子K2的Gersten猜想。也获得了Bloch-Ogus型结果。 SUSLIN的精确顺序被得出,并给出其应用于有限结果的。证明了Roitman定理的版本。
The present paper contains new geometric theorems in mixed characteristic case. We derive a bunch of cohomological consequences using these geometric theorems. Among them an isotropy result for quadratic spaces, a purity result for quadratic spaces, a result on the Grothendieck--Serre conjecture for the special linear group of an Azumaya algebra. The Gersten conjecture for the functor K2 is proved. Bloch-Ogus type result is obtained as well. Suslin's exact sequence is derived and its application to a finiteness result is given. A version of the Roitman theorem is proved.