论文标题

长度最小化水平曲线通过校准

Length-minimizing level curves via calibrations

论文作者

Kwong, Kwok-Kun, Lee, Hojoo

论文摘要

我们提出了一个基本标准,用于显示大量共形度量的大量测量学特性的长度最小化特性。特别是,我们证明了谐波函数的级别曲线的长度最小化属性,以及在上半部分中带有偏心率$ \ varepsilon $的圆锥形段家族的长度最小化属性,并带有结构化度量$ \ weft({\ varepsilon}^{2} + \ frac {1} \;} \ right)\ left(dx^{2} + dy^{2} \ right)$。

We present an elementary criterion to show the length-minimizing property of geodesics for a large class of conformal metrics. In particular, we prove the length-minimizing property of level curves of harmonic functions and the length-minimizing property of a family of the conic sections with the eccentricity $\varepsilon$ in the upper half plane endowed with the conformal metric $ \left( {\varepsilon}^{2} + \frac{1}{\;{y^2} \;} \right) \left(dx^{2} + dy^{2} \right)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源