论文标题
本地扰动晶格的反问题 - 离散的哈密顿和量子图
Inverse problems for locally perturbed lattices -- Discrete Hamiltonian and quantum graph
论文作者
论文摘要
我们考虑了两种类型的Schrödinger算子在本地扰动的周期性晶格上的逆散射问题。对于离散的哈密顿量,所有能量的S-矩阵的知识决定了哈密顿量的图形结构和系数。对于局部扰动的等边度图,所有能量的S-Matrix的知识决定了图结构。
We consider the inverse scattering problems for two types of Schrödinger operators on locally perturbed periodic lattices. For the discrete Hamiltonian, the knowledge of the S-matrix for all energies determines the graph structure and the coefficients of the Hamiltonian. For locally perturbed equilateral metric graphs, the knowledge of the S-matrix for all energies determines the graph structure.