论文标题
多 - 边界最佳运输和自由供应剂的近似算法
Approximative Algorithms for Multi-Marginal Optimal Transport and Free-Support Wasserstein Barycenters
论文作者
论文摘要
$ n $离散概率度量的计算求解具有平方的欧几里得成本的多边界最佳运输(MOT)最近引起了极大的关注,部分原因是其解决方案与Wasserstein- $ 2 $ Barycenters的通信,这些解决方案在数据科学中有许多应用。通常,这个问题是NP-HARD,要求使用实用的近似算法。虽然熵正则化已成功地应用于近似的瓦斯坦barycenters,但由于维数的诅咒,这失去了最佳解决方案的稀疏性,因此很难直接在实践中解决MOT问题。因此,对于获得barycenters,通常会诉诸于固定支撑限制网格,但是,在较高的环境尺寸$ d $中,这在较高的环境尺寸中是过于刺激的。在本文中,在分析了MOT和Barycenters之间的关系之后,我们提出了两种直接近似MOT解决方案的算法,主要需要$ n-1 $标准的两种分支机构OT计算。因此,它们是快速,记忆效率且易于实现的,并且可以与任何稀疏的OT求解器一起用作黑匣子。此外,它们产生稀疏的解决方案并显示出令人鼓舞的数值结果。我们从理论上分析了这些算法,证明了相对近似误差的上限和下限。
Computationally solving multi-marginal optimal transport (MOT) with squared Euclidean costs for $N$ discrete probability measures has recently attracted considerable attention, in part because of the correspondence of its solutions with Wasserstein-$2$ barycenters, which have many applications in data science. In general, this problem is NP-hard, calling for practical approximative algorithms. While entropic regularization has been successfully applied to approximate Wasserstein barycenters, this loses the sparsity of the optimal solution, making it difficult to solve the MOT problem directly in practice because of the curse of dimensionality. Thus, for obtaining barycenters, one usually resorts to fixed-support restrictions to a grid, which is, however, prohibitive in higher ambient dimensions $d$. In this paper, after analyzing the relationship between MOT and barycenters, we present two algorithms to approximate the solution of MOT directly, requiring mainly just $N-1$ standard two-marginal OT computations. Thus, they are fast, memory-efficient and easy to implement and can be used with any sparse OT solver as a black box. Moreover, they produce sparse solutions and show promising numerical results. We analyze these algorithms theoretically, proving upper and lower bounds for the relative approximation error.