论文标题

DCSAU网络:用于医学图像分割的更深,更紧凑的分裂注意U-NET

DCSAU-Net: A Deeper and More Compact Split-Attention U-Net for Medical Image Segmentation

论文作者

Xu, Qing, Ma, Zhicheng, HE, Na, Duan, Wenting

论文摘要

卷积神经网络(CNN)的深度学习体系结构在计算机视野领域取得了杰出的成功。 CNN构建的编码器架构U-Net在生物医学图像分割方面取得了巨大突破,并且已在各种实用的情况下应用。但是,编码器部分中每个下采样层和简单堆积的卷积的平等设计不允许U-NET从不同深度提取足够的特征信息。医学图像的复杂性日益增加为现有方法带来了新的挑战。在本文中,我们提出了一个更深层,更紧凑的分裂注意U形网络(DCSAU-NET),该网络有效地利用了基于两个新型框架的低级和高级语义信息:主要特征保护和紧凑的分裂专门块。我们评估了CVC-ClinicDB,2018年数据科学碗,ISIC-2018和SEGPC-2021数据集的建议模型。结果,DCSAU-NET显示出比其他最新方法(SOTA)方法更好的性能(SOTA)方法,从联合(MIOU)和F1-SOCRE的平均值来看。更重要的是,提出的模型在具有挑战性的图像上表现出了出色的分割性能。可以在https://github.com/xq141839/dcsau-net上找到我们工作的代码和更多技术细节。

Deep learning architecture with convolutional neural network (CNN) achieves outstanding success in the field of computer vision. Where U-Net, an encoder-decoder architecture structured by CNN, makes a great breakthrough in biomedical image segmentation and has been applied in a wide range of practical scenarios. However, the equal design of every downsampling layer in the encoder part and simply stacked convolutions do not allow U-Net to extract sufficient information of features from different depths. The increasing complexity of medical images brings new challenges to the existing methods. In this paper, we propose a deeper and more compact split-attention u-shape network (DCSAU-Net), which efficiently utilises low-level and high-level semantic information based on two novel frameworks: primary feature conservation and compact split-attention block. We evaluate the proposed model on CVC-ClinicDB, 2018 Data Science Bowl, ISIC-2018 and SegPC-2021 datasets. As a result, DCSAU-Net displays better performance than other state-of-the-art (SOTA) methods in terms of the mean Intersection over Union (mIoU) and F1-socre. More significantly, the proposed model demonstrates excellent segmentation performance on challenging images. The code for our work and more technical details can be found at https://github.com/xq141839/DCSAU-Net.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源