论文标题

自然通货膨胀与重力与重力的无最小耦合在$ r^2 $重力下

Natural Inflation with non minimal coupling to gravity in $R^2$ gravity under the Palatini formalism

论文作者

AlHallak, M., Chamoun, N., Eldaher, M. S.

论文摘要

在$ r+αr^2 $的延长重力下,研究了与Lagrangian项$ξ^2 r $所体现的自然通货膨胀(NMC)对重力的自然膨胀,并由拉格朗日项$ξ2r$ $体现。治疗是在帕拉蒂尼形式主义中进行的。我们讨论了模型的各种限制``$α\ gg 1 $'''和``$α\ ll 1 $'''''在两种通货膨胀情况下:``slow slow roll''和``slow roll''''和``常数''场景。通过分析模型的观察结果,我们的结果显示了该模型的理论结果与Planck 2018和Bicep/Keck 2018的观察性限制之间的兼容性有显着改善,这是张张量与尺度比率和光谱指数的例证。此外,自然通货膨胀的参数空间的更广泛范围与Planck \&Bicep/Keck结果的置信度轮廓兼容。 NMC对重力和$αr^2 $的贡献的关节作用可取得重大改进:$αr^2 $重力会影响标量诱导比值值,而NMC对重力对光谱指数值的影响更大。这两个术语的贡献允许将更多先前排除的间隔包括在内,现在与观察数据兼容。这些关于NMC对重力的作用的结论,尤其是延长的重力仍主要有效,其周期性NMC的形式与自然通胀电位相似。

Natural Inflation with non-minimal coupling (NMC) to gravity, embodied by a Lagrangian term $ξϕ^2 R $, is investigated in the context of an extended gravity of the form $R+ αR^2$. The treatment is performed in the Palatini formalism. We discuss various limits of the model ``$α\gg 1$'' and ``$α\ll 1$'' in light of two scenarios of inflation: a ``Slow roll'' and a ``Constant roll'' scenario. By analyzing the observational consequences of the model, our results show a significant improvement regarding compatibility between the theoretical results of this model and the observational constraints from Planck 2018 and BICEP/Keck 2018, as exemplified by the tensor-to-scalar ratio and spectral index. Furthermore, a broader range for the parameter space of natural inflation is now compatible with the confidence contours of Planck \& BICEP/Keck results. The joint effects of the contributions of both the NMC to gravity and the $αR^2$ make a significant improvement: $αR^2$ gravity influences scalar-tensor ratio values, whereas NMC to gravity has a more significant impact on the spectral index values. Contributions from both terms allow more previously excluded intervals to be included being compatible now with observational data. These conclusions about the roles of NMC to gravity and, particularly, the extended gravity remain mainly valid with a periodic NMC similar in form to the natural inflation potential.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源