论文标题

GLISP-R:具有收敛保证的基于偏好的优化算法

GLISp-r: A preference-based optimization algorithm with convergence guarantees

论文作者

Previtali, Davide, Mazzoleni, Mirko, Ferramosca, Antonio, Previdi, Fabio

论文摘要

基于偏好的优化算法是迭代过程,仅基于不同调谐夫妇之间的比较,寻求决策向量的最佳校准。在每次迭代中,人类决策者都表达了两个校准(样本)之间的偏好,强调一个(如果有的话)比另一个更好。优化过程必须使用观察到的偏好来查找决策向量的调整,而决策向量是决策者最喜欢的,同时还可以最大程度地减少比较数量。在这项工作中,我们从实用性理论的角度提出了基于偏好的优化问题。然后,我们提出了GLISP-R,这是一个名为GLISP的最新基于偏好的优化程序的扩展。后者使用径向基函数代孕来描述决策者的口味。迭代地,GLISP提出了新样本,以与通过对替代模型的开发和对决策空间的探索进行交易相比,可获得最佳校准。在GLISP-R中,我们建议在寻找受MSRS启发的新候选样本时使用的不同标准,MSR是Black-Box优化框架中流行的过程。与GLISP相比,GLISP-R不太可能陷入基于偏好的优化问题的局部优点。我们通过比较Glisp和Glisp-R在几个基准优化问题上的表现,从理论上激励这一主张,并通过经验上的证明。

Preference-based optimization algorithms are iterative procedures that seek the optimal calibration of a decision vector based only on comparisons between couples of different tunings. At each iteration, a human decision-maker expresses a preference between two calibrations (samples), highlighting which one, if any, is better than the other. The optimization procedure must use the observed preferences to find the tuning of the decision vector that is most preferred by the decision-maker, while also minimizing the number of comparisons. In this work, we formulate the preference-based optimization problem from a utility theory perspective. Then, we propose GLISp-r, an extension of a recent preference-based optimization procedure called GLISp. The latter uses a Radial Basis Function surrogate to describe the tastes of the decision-maker. Iteratively, GLISp proposes new samples to compare with the best calibration available by trading off exploitation of the surrogate model and exploration of the decision space. In GLISp-r, we propose a different criterion to use when looking for new candidate samples that is inspired by MSRS, a popular procedure in the black-box optimization framework. Compared to GLISp, GLISp-r is less likely to get stuck on local optima of the preference-based optimization problem. We motivate this claim theoretically, with a proof of global convergence, and empirically, by comparing the performances of GLISp and GLISp-r on several benchmark optimization problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源