论文标题

分裂方法与非线性热方程的收敛分析

Convergence analysis of the splitting method to the nonlinear heat equation

论文作者

Choi, Hyung Jun, Choi, Woocheol, Koh, Youngwoo

论文摘要

在本文中,我们分析了$ω\ subset \ mathbb {r}^d $($ d \ geq 1 $)中的非线性热方程的操作员分裂方案:$ \ partial_t u =ΔU=Δu +Δu +λ| $ \partialΩ\ times(0,\ infty)$,$ u({\ bf x},0)= ϕ({\ bf x})$ in $ω$。其中$λ\ in \ { - 1,1 \} $和$ nev {1,q}(ω)\ cap l^{\ infty}(ω)$,带有$ 2 \ leq p <\ iffty $和$ d(p-1)和$ d(p-1)/2 <q <q <q <\ iffty $。我们建立了$ u $ in $ l^r $ -space($ r \ geq q $)的近似值的良好性,此外,我们得出了其订单$ \ nathcal {o}(τ)$的收敛速率,以$ \ thime $τ)$ 0 $ 0 $。最后,我们给出一些数值示例,以确认分析结果的可靠性。

In this paper, we analyze an operator splitting scheme of the nonlinear heat equation in $Ω\subset\mathbb{R}^d$ ($d\geq 1$): $\partial_t u = Δu + λ|u|^{p-1} u$ in $Ω\times(0,\infty)$, $u=0$ in $\partialΩ\times(0,\infty)$, $u ({\bf x},0) =ϕ({\bf x})$ in $Ω$. where $λ\in\{-1,1\}$ and $ϕ\in W^{1,q}(Ω)\cap L^{\infty} (Ω)$ with $2\leq p < \infty$ and $d(p-1)/2<q<\infty$. We establish the well-posedness of the approximation of $u$ in $L^r$-space ($r\geq q$), and furthermore, we derive its convergence rate of order $\mathcal{O}(τ)$ for a time step $τ>0$. Finally, we give some numerical examples to confirm the reliability of the analyzed result.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源