论文标题
伯格曼内核的极限
Limit of Bergman kernels on a tower of coverings of compact Kähler manifolds
论文作者
论文摘要
We prove the convergence of the Bergman kernels and the $L^2$-Hodge numbers on a tower of Galois coverings $\{X_j\}$ of a compact Kähler manifold $X$ converging to an infinite Galois (not necessarily universal) covering $\widetilde{X}$.我们还表明,作为一个应用程序,适用于足够大的$ j $的规范行束$ k_ {x_j} $会导致沉浸在某些投影空间中,如果是这样,则为$ k _ {\ widetilde {x}} $的部分。
We prove the convergence of the Bergman kernels and the $L^2$-Hodge numbers on a tower of Galois coverings $\{X_j\}$ of a compact Kähler manifold $X$ converging to an infinite Galois (not necessarily universal) covering $\widetilde{X}$. We also show that, as an application, sections of canonical line bundle $K_{X_j}$ for sufficiently large $j$ give rise to an immersion into some projective space, if so do sections of $K_{\widetilde{X}}$.