论文标题

谁将离开儿科体重管理计划以及何时? - 一种用于预测损耗模式的机器学习方法

Who will Leave a Pediatric Weight Management Program and When? -- A machine learning approach for predicting attrition patterns

论文作者

Fayyaz, Hamed, Phan, Thao-Ly T., Bunnell, H. Timothy, Beheshti, Rahmatollah

论文摘要

儿童肥胖是一个主要的公共卫生问题。多学科的小儿体重管理计划被认为是肥胖儿童和严重肥胖儿童的标准治疗方法,他们无法在初级保健环境中成功进行管理;但是,高辍学率(称为流失率)是提供成功干预措施的主要障碍。预测流失模式可以帮助提供者降低损耗率。先前的工作主要集中于使用统计分析方法找到静态减素的预测指标。在这项研究中,我们提出了一种机器学习模型,以预测(a)流失的可能性,以及(b)在加入体重管理计划后的不同时间点,身体质量指数(BMI)百分比的变化。我们使用一个五年的数据集,其中包含与大约4,550名儿童相关的信息,我们使用Nemours小儿体重管理计划中的数据编制了这些信息。我们的模型表现出强烈的预测性能,这是由不同任务的高AUROC得分确定的(预测损耗的平均AUROC为0.75,预测体重预后为0.73)。此外,我们报告了一系列解释实验中预测损耗和重量结果的最高特征。

Childhood obesity is a major public health concern. Multidisciplinary pediatric weight management programs are considered standard treatment for children with obesity and severe obesity who are not able to be successfully managed in the primary care setting; however, high drop-out rates (referred to as attrition) are a major hurdle in delivering successful interventions. Predicting attrition patterns can help providers reduce the attrition rates. Previous work has mainly focused on finding static predictors of attrition using statistical analysis methods. In this study, we present a machine learning model to predict (a) the likelihood of attrition, and (b) the change in body-mass index (BMI) percentile of children, at different time points after joining a weight management program. We use a five-year dataset containing the information related to around 4,550 children that we have compiled using data from the Nemours Pediatric Weight Management program. Our models show strong prediction performance as determined by high AUROC scores across different tasks (average AUROC of 0.75 for predicting attrition, and 0.73 for predicting weight outcomes). Additionally, we report the top features predicting attrition and weight outcomes in a series of explanatory experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源