论文标题
建模Kilonova AT2017GFO的光谱-I:光电时代
Modelling the spectra of the kilonova AT2017gfo -- I: The photospheric epochs
论文作者
论文摘要
与二进制中子星(BNS)合并GW170817相关的KILONOVA(KN)是引力波源唯一已知的电磁对应物。在这里,我们制作了一系列带有更新原子数据的辐射传输模型(使用$ \ textsc {tardis} $),并将它们与精确校准的光谱进行比较。我们基于BNS合并的现实流体动力学模拟,使用核网络计算中的元素组成。我们表明,合并后+1.4天的蓝光谱需要具有高电子部分的核合成轨迹。我们最合适的模型完全由第一个$ r $ - 过程峰元素(SR&ZR)组成,SR $ \,\ textsc {ii} $吸收很好地复制了强吸收功能。在这个时期,我们设定了$ x _ {\ textsc {ln}} \ Lessim 5 \ times 10^{ - 3} $的灯笼质量分数的上限。相比之下,所有后续光谱从$+2.4-6.4 $天开始都需要适度量的灯笼材料($ x _ {\ textsc {ln}} \ simeq 0.05^{+0.05} _ { - 0.02} $),由$ y y _ = 0的轨迹生产。这会产生灯笼诱导的线条覆盖在6000 $ \,$Å,以及足够的轻$ r $ - 过程元素,以解释$ \ sim 0.7-1.0-1.0 \,\ micron $(sr $ \,\ textsc {ii} $)的持续强功能。该组合物与观察到的数据具有良好的匹配,表明强蓝色逆转不足会导致近红外(NIR)过量。第一个时期与所有其他时期之间组成的分离表明射流分层,或者存在两个不同材料的组成部分。这进一步支持了“两个组分” Kilonova模型,并从核合成轨迹中限制了元素组成。主要的不确定性在于原子数据的可用性和扩展材料的电离状态。
The kilonova (KN) associated with the binary neutron star (BNS) merger GW170817 is the only known electromagnetic counterpart to a gravitational wave source. Here we produce a sequence of radiative transfer models (using $\textsc{tardis}$) with updated atomic data, and compare them to accurately calibrated spectra. We use element compositions from nuclear network calculations based on a realistic hydrodynamical simulation of a BNS merger. We show that the blue spectrum at +1.4 days after merger requires a nucleosynthetic trajectory with a high electron fraction. Our best-fitting model is composed entirely of first $r$-process peak elements (Sr & Zr) and the strong absorption feature is reproduced well by Sr$\,\textsc{ii}$ absorption. At this epoch, we set an upper limit on the lanthanide mass fraction of $X_{\textsc{ln}} \lesssim 5 \times 10^{-3}$. In contrast, all subsequent spectra from $+2.4 - 6.4$ days require the presence of a modest amount of lanthanide material ($X_{\textsc{ln}} \simeq 0.05^{+0.05}_{-0.02}$), produced by a trajectory with $Y_{\rm e} = 0.29$. This produces lanthanide-induced line blanketing below 6000$\,$Å, and sufficient light $r$-process elements to explain the persistent strong feature at $\sim 0.7 - 1.0 \, \micron$ (Sr$\,\textsc{ii}$). The composition gives good matches to the observed data, indicating that the strong blue flux deficit results in the near-infrared (NIR) excess. The disjoint in composition between the first epoch and all others indicates either ejecta stratification, or the presence of two distinct components of material. This further supports the `two-component' kilonova model, and constrains the element composition from nucleosynthetic trajectories. The major uncertainties lie in availability of atomic data and the ionisation state of the expanding material.