论文标题

多标签机器学习模型和风险分层模式用于预测非浮力房颤患者的中风和出血风险

Performance of multilabel machine learning models and risk stratification schemas for predicting stroke and bleeding risk in patients with non-valvular atrial fibrillation

论文作者

Lu, Juan, Hutchens, Rebecca, Hung, Joseph, Bennamoun, Mohammed, McQuillan, Brendan, Briffa, Tom, Sohel, Ferdous, Murray, Kevin, Stewart, Jonathon, Chow, Benjamin, Sanfilippo, Frank, Dwivedi, Girish

论文摘要

对心房颤动(AF)患者的适当抗血栓疗法需要评估缺血性中风和出血风险。但是,诸如CHA2DS2-VASC和BLED等风险分层模式对于AF患者具有适度的预测能力。机器学习(ML)技术可以提高预测性能,并支持适当的抗血栓疗法的决策。我们比较了多标记ML模型的性能和当前使用的风险评分,以预测AF患者的预后。材料和方法这是一项回顾性队列研究,对9670名患者,平均年龄为76.9岁,有46%的女性患有非浮雕AF,并进行了1年的随访。主要结果是缺血性中风和主要出血。次要结果是全因死亡和无事件的生存。将ML模型的判别能力与曲线下区域(AUC)下的临床风险评分进行了比较。使用净重分类指数评估风险分层。与其他ML模型相比,结果多标记梯度提升机提供了中风,大出血和死亡(分别为0.685、0.709和0.765)的最佳判别能力。与CHA2DS2-VASC(AUC = 0.652)相比,它为中风提供了适度的性能改善,但与Has-Bled相比(AUC = 0.522),它显着改善了主要的出血预测。与CHA2DDS2-VASC相比,它还具有更大的判别能力(AUC = 0.606)。此外,模型还确定了每个结果的其他风险特征(例如血红蛋白水平,肾功能等)。结论多标记ML模型可以胜过临床风险分层评分,以预测非浮力AF患者的大量出血和死亡的风险。

Appropriate antithrombotic therapy for patients with atrial fibrillation (AF) requires assessment of ischemic stroke and bleeding risks. However, risk stratification schemas such as CHA2DS2-VASc and HAS-BLED have modest predictive capacity for patients with AF. Machine learning (ML) techniques may improve predictive performance and support decision-making for appropriate antithrombotic therapy. We compared the performance of multilabel ML models with the currently used risk scores for predicting outcomes in AF patients. Materials and Methods This was a retrospective cohort study of 9670 patients, mean age 76.9 years, 46% women, who were hospitalized with non-valvular AF, and had 1-year follow-up. The primary outcome was ischemic stroke and major bleeding admission. The secondary outcomes were all-cause death and event-free survival. The discriminant power of ML models was compared with clinical risk scores by the area under the curve (AUC). Risk stratification was assessed using the net reclassification index. Results Multilabel gradient boosting machine provided the best discriminant power for stroke, major bleeding, and death (AUC = 0.685, 0.709, and 0.765 respectively) compared to other ML models. It provided modest performance improvement for stroke compared to CHA2DS2-VASc (AUC = 0.652), but significantly improved major bleeding prediction compared to HAS-BLED (AUC = 0.522). It also had a much greater discriminant power for death compared with CHA2DS2-VASc (AUC = 0.606). Also, models identified additional risk features (such as hemoglobin level, renal function, etc.) for each outcome. Conclusions Multilabel ML models can outperform clinical risk stratification scores for predicting the risk of major bleeding and death in non-valvular AF patients.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源