论文标题

Lubin-Tate Power系列的PerfectOid接合人

The perfectoid commutant of Lubin-Tate power series

论文作者

Berger, Laurent

论文摘要

让LT为QP有限扩展的lubin-Tate正式组。由Lubin-Sarkis定理,与AUT(LT)元素(LT)上下班的可逆特征P功率系列本身在AUT(LT)中。通过将这样的功率序列提升为特征零,并利用P-ADIC时期的某些环中的局部分析向量理论,我们将此结果扩展到了PerfectOdoid幂序列。这使我们能够从其完整的完美中恢复Lubin-Tate扩展的规范场。

Let LT be a Lubin-Tate formal group attached to a finite extension of Qp. By a theorem of Lubin-Sarkis, an invertible characteristic p power series that commutes with the elements of Aut(LT) is itself in Aut(LT). We extend this result to perfectoid power series, by lifting such a power series to characteristic zero and using the theory of locally analytic vectors in certain rings of p-adic periods. This allows us to recover the field of norms of the Lubin-Tate extension from its completed perfection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源