论文标题

基于图形卷积神经网络和强化学习的动态虚拟网络嵌入算法

Dynamic Virtual Network Embedding Algorithm based on Graph Convolution Neural Network and Reinforcement Learning

论文作者

Zhang, Peiying, Wang, Chao, Kumar, Neeraj, Zhang, Weishan, Liu, Lei

论文摘要

网络虚拟化(NV)是一项具有广泛应用程序前景的技术。虚拟网络嵌入(VNE)是VN的核心方向,旨在为用户功能请求提供更灵活的基础物理资源分配。经典的VNE问题通常是通过启发式方法解决的,但是该方法通常会限制算法的灵活性并忽略时间限制。此外,物理领域的分区自主权和虚拟网络请求(VNR)的动态特征也增加了VNE的难度。本文提出了一种新型的VNE算法,该算法将加固学习(RL)和图神经网络(GNN)理论应用于算法,尤其是图形卷积神经网络(GCNN)和RL算法的组合。基于自定义的健身矩阵和健身价值,我们设置了算法实现的目标函数,实现了有效的动态VNE算法,并有效地降低了资源碎片的程度。最后,我们使用比较算法来评估所提出的方法。仿真实验验证了基于RL和GCNN的动态VNE算法具有良好的基本VNE特性。通过更改物理网络和虚拟网络的资源属性,可以证明该算法具有良好的灵活性。

Network virtualization (NV) is a technology with broad application prospects. Virtual network embedding (VNE) is the core orientation of VN, which aims to provide more flexible underlying physical resource allocation for user function requests. The classical VNE problem is usually solved by heuristic method, but this method often limits the flexibility of the algorithm and ignores the time limit. In addition, the partition autonomy of physical domain and the dynamic characteristics of virtual network request (VNR) also increase the difficulty of VNE. This paper proposed a new type of VNE algorithm, which applied reinforcement learning (RL) and graph neural network (GNN) theory to the algorithm, especially the combination of graph convolutional neural network (GCNN) and RL algorithm. Based on a self-defined fitness matrix and fitness value, we set up the objective function of the algorithm implementation, realized an efficient dynamic VNE algorithm, and effectively reduced the degree of resource fragmentation. Finally, we used comparison algorithms to evaluate the proposed method. Simulation experiments verified that the dynamic VNE algorithm based on RL and GCNN has good basic VNE characteristics. By changing the resource attributes of physical network and virtual network, it can be proved that the algorithm has good flexibility.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源