论文标题

具有任意连接拓扑的复发神经网络中尖峰模式形成的严格随机理论

A rigorous stochastic theory for spike pattern formation in recurrent neural networks with arbitrary connection topologies

论文作者

Schünemann, Maik, Ernst, Udo, Kesseböhmer, Marc

论文摘要

皮质网络表现出同步活性,通常以峰值雪崩形式出现在自发事件中。由于同步已与大脑功能的中心方面有因果关系,例如选择性信号处理和刺激信息的整合,因此参与雪崩是瞬时同步的一种形式,该形式暂时创建神经组件,因此可能特别有用,可用于实施灵活的信息处理。因此,为了了解组装形成如何支持神经计算,必须建立一个综合理论,即网络结构和动态如何相互作用以生成特定的雪崩模式和序列。在这里,我们为具有任意非负相互作用权重的经常耦合的尖峰神经元的有限网络得出了精确的雪崩分布,这是通过将模型动力学正式映射到$ n $ torus上的线性动力学系统以及利用相位空间中固有的自相似度的线性动力学系统来实现的。我们介绍了相对独特的终点性的概念,并表明如果系统是由时间不变的伯努利过程驱动的,则可以保证此属性。这种方法不仅可以为雪崩大小提供封闭形式的分析表达式,还可以确定雪崩中射击的详细集合(即雪崩组装)。网络结构和动力学之间的基本依赖性是通过根据诱导的图拉普拉斯式表达雪崩组件的分布来透明的。我们探讨了这种依赖性的分析后果,并提供了说明示例。

Cortical networks exhibit synchronized activity which often occurs in spontaneous events in the form of spike avalanches. Since synchronization has been causally linked to central aspects of brain function such as selective signal processing and integration of stimulus information, participating in an avalanche is a form of a transient synchrony which temporarily creates neural assemblies and hence might especially be useful for implementing flexible information processing. For understanding how assembly formation supports neural computation, it is therefore essential to establish a comprehensive theory of how network structure and dynamics interact to generate specific avalanche patterns and sequences. Here we derive exact avalanche distributions for a finite network of recurrently coupled spiking neurons with arbitrary non-negative interaction weights, which is made possible by formally mapping the model dynamics to a linear, random dynamical system on the $N$-torus and by exploiting self-similarities inherent in the phase space. We introduce the notion of relative unique ergodicity and show that this property is guaranteed if the system is driven by a time-invariant Bernoulli process. This approach allows us not only to provide closed-form analytical expressions for avalanche size, but also to determine the detailed set(s) of units firing in an avalanche (i.e., the avalanche assembly). The underlying dependence between network structure and dynamics is made transparent by expressing the distribution of avalanche assemblies in terms of the induced graph Laplacian. We explore analytical consequences of this dependence and provide illustrating examples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源