论文标题

逆转扭曲产品空间中的曲率

Curvatures in contravariant warped product space

论文作者

Kumar, P., Pal, B., Kumar, S.

论文摘要

在本文中,我们在contravariant翘曲产品空间中介绍了截面曲率$(m = m_ {1} \ times_ {f_ {1}} m_ {2},π,π,g^{f_ {1}})$,其中$π=π=π_1+ν__{1} 1} 1}π______2$)。之后,我们发现$ m $的截面曲率为$ m_ {1} $和$ m_ {2} $是正截面曲率的泊松歧管。在$ m $的双空间中,我们介绍了空,空格般的,及时的$ 1- $表单,然后通过使用这些表格,定义了Qualar Curvature。最后,作为一个示例,我们获得了$ m_ {1} = h_ {1}^2 $,$ m_ {2} = s_ {0}^2,e_ {2}^2 $和$ m $的Qualar Curvature。

In this article, we introduce the sectional curvature in contravariant warped product space $(M= M_{1}\times_{f_{1}}M_{2},Π,g^{f_{1}})$, where $Π=Π_1+ν_{1}Π_2$). After that we find the sectional curvature of $M$ for which $M_{1}$ and $M_{2}$ are Poisson manifolds of positive sectional curvatures. In dual space of $M$, we introduce the notion of null, spacelike, timelike $1 -$ forms and then by using these forms, qualar curvature is defined. Finally, as an examples we obtain the sectional curvatures for $M_{1} = H_{1}^2$, $M_{2} = S_{0}^2 , E_{2}^2$ and qualar curvature for $M$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源