论文标题
$ su(2)$ - 不变状态的孔数的注释
A Note on Holevo quantity of $SU(2)$-invariant states
论文作者
论文摘要
漏洞数量和$ su(2)$ - 不变状态在量子信息处理中特别重要。我们通过分析计算由旋转$ j $和旋转组成的两分组系统的孔值数量 - $ \ frac {1} {2} $ subsystems,$ su(2)$对称性,当在旋转 - $ \ $ \ frac {1} {2} {2} {2} $ subsystems上执行投影测量。详细分析了孔数量,孔数量和状态的最大值之间的关系。特别是,我们表明,当$ f <f_d $的参数区域中的漏洞数量增加,并且当$ j $增加时$ f> f_d $减少,其中$ f $是热平衡中温度的功能,$ f_d = j/(2j+1)$,以及$ f $ f = 1 $ j $ j $ j $ j $ j的最大值。此外,当系统尺寸增加时,孔数量的最大值会降低。
The Holevo quantity and the $SU(2)$-invariant states have particular importance in quantum information processing. We calculate analytically the Holevo quantity for bipartite systems composed of spin-$j$ and spin-$\frac{1}{2}$ subsystems with $SU(2)$ symmetry, when the projective measurements are performed on the spin-$\frac{1}{2}$ subsystem. The relations among the Holevo quantity, the maximal values of the Holevo quantity and the states are analyzed in detail. In particular, we show that the Holevo quantity increases in the parameter region $F<F_d$ and decreases in region $F>F_d$ when $j$ increases, where $F$ is function of temperature in thermal equilibrium and $F_d=j/(2j+1)$, and the maximum value of the Holevo quantity is attained at $F=1$ for all $j$. Moreover, when the dimension of system increases, the maximal value of the Holevo quantity decreases.