论文标题

撤回成功估计

Withdrawal Success Estimation

论文作者

Brown, Hayden

论文摘要

鉴于几何征费α稳定的财富过程,为常规投资计划的最终财富建造了对数levy稳定的下限。使用转换,将下限应用于初始投资后发生的提款时间表。结果,在完成给定提款时间表的概率上描述了上限。对于等于时间的恒定金额的提款,对财富过程的初始投资和参数给出了必要的条件,以便可以以95%的信心进行$ K $的提款。当初始投资是在标准普尔综合指数中和$ 2 \ leq k \ leq 16 $中时,初始投资必须至少是每次提款的$ k $倍。

Given a geometric Levy alpha-stable wealth process, a log-Levy alpha-stable lower bound is constructed for the terminal wealth of a regular investing schedule. Using a transformation, the lower bound is applied to a schedule of withdrawals occurring after an initial investment. As a result, an upper bound is described on the probability to complete a given schedule of withdrawals. For withdrawals of a constant amount at equidistant times, necessary conditions are given on the initial investment and parameters of the wealth process such that $k$ withdrawals can be made with 95% confidence. When the initial investment is in the S&P Composite Index and $2\leq k\leq 16$, then the initial investment must be at least $k$ times the amount of each withdrawal.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源