论文标题
自动lambda:解开动态任务关系
Auto-Lambda: Disentangling Dynamic Task Relationships
论文作者
论文摘要
了解多个相关任务的结构可以进行多任务学习,以提高其中一个或全部的概括能力。但是,通常需要以极高的计算成本来捕获任务关系,以捕获任务关系。在这项工作中,我们通过称为Auto-Lambda的自动加权框架来学习任务关系。与以前假定任务关系固定的方法不同,Auto-Lambda是一个基于梯度的元学习框架,可以通过特定于任务的权重探索连续的,动态的任务关系,并可以通过元数据的构造来优化任务组合的任何选择;验证损失会自动影响整个培训的任务权重。我们将所提出的框架应用于计算机视觉和机器人技术中的多任务和辅助学习问题,并证明自动-lambda与专门为每个问题和数据域设计的优化策略相比,即使是与优化策略相比,Auto-Lambda也可以实现最新的性能。最后,我们观察到自动兰巴达可以发现有趣的学习行为,从而导致多任务学习的新见解。代码可在https://github.com/lorenmt/auto-lambda上找到。
Understanding the structure of multiple related tasks allows for multi-task learning to improve the generalisation ability of one or all of them. However, it usually requires training each pairwise combination of tasks together in order to capture task relationships, at an extremely high computational cost. In this work, we learn task relationships via an automated weighting framework, named Auto-Lambda. Unlike previous methods where task relationships are assumed to be fixed, Auto-Lambda is a gradient-based meta learning framework which explores continuous, dynamic task relationships via task-specific weightings, and can optimise any choice of combination of tasks through the formulation of a meta-loss; where the validation loss automatically influences task weightings throughout training. We apply the proposed framework to both multi-task and auxiliary learning problems in computer vision and robotics, and show that Auto-Lambda achieves state-of-the-art performance, even when compared to optimisation strategies designed specifically for each problem and data domain. Finally, we observe that Auto-Lambda can discover interesting learning behaviors, leading to new insights in multi-task learning. Code is available at https://github.com/lorenmt/auto-lambda.