论文标题
Kotzig-Rosa猜想的证明
A proof of the Kotzig-Ringel-Rosa Conjecture
论文作者
论文摘要
在图理论中,具有m边缘的图形的优美标记是其顶点的标记,其整数子集的子集范围从0到m,因此没有两个顶点共享标签,并且每个边缘都由分配给其端点的标签的绝对差异。 Kotzig-Rosa的猜想断言,每棵树都接受了优雅的标签。我们通过猜想的功能重新制定和组成引理提供了这种长期猜想的证明。
In graph theory, a graceful labeling of a graph with m edges is a labeling of its vertices with a subset of the integers ranging from 0 to m inclusive, such that no two vertices share a label, and each edge is uniquely identified by the absolute difference of labels assigned to its endpoints. The Kotzig-Ringel-Rosa conjecture asserts that every tree admits a graceful labeling. We provide a proof of this long standing conjecture via a functional reformulation of the conjecture and a composition lemma.