论文标题
Zinbiel代数中的Abelian次级代理和最大维度的理想
Abelian subalgebras and ideals of maximal dimension in Zinbiel algebras
论文作者
论文摘要
在本文中,我们比较了有限维Zinbiel代数的Abelian亚代毛和最大维度的理想。我们研究Zinbiel代数,其中包含Codimension $ 1 $的最大ABELIAN亚级别和可超过的Zinbiel代数,其中此类子代理具有编码$ 2 $,我们还分析了Filiform Zinbiel代数的案例。我们举例说明了一些结果,包括在已分类的复杂场上列出$α$的值和$β$的值。
In this paper, we compare the abelian subalgebras and ideals of maximal dimension for finite-dimensional Zinbiel algebras. We study Zinbiel algebras containing maximal abelian subalgebras of codimension $1$ and supersolvable Zinbiel algebras in which such subalgebras have codimension $2$, and we also analyze the case of filiform Zinbiel algebras. We give examples to clarify some results, including listing the values for $α$ and $β$ for the low dimensional Zinbiel algebras over the complex field that have been classified.