论文标题
分散机器学习的异步平行递增块坐标下降
Asynchronous Parallel Incremental Block-Coordinate Descent for Decentralized Machine Learning
论文作者
论文摘要
机器学习(ML)是用于大数据驱动的大型物联网(IoT)智能和无处不在的计算的重要技术。对于快速增加的应用程序和数据量,分布式学习是一个有希望的新兴范式,因为它通常是不切实际或效率低下的数据,可以将数据共享/汇总到来自不同的位置的集中位置。本文研究了在分散系统上训练ML模型的问题,在该系统中,数据分布在许多用户设备上,学习算法运行在设备上,目的是放松中央实体/服务器的负担。尽管在不同用例中已将基于八卦的方法用于此目的,但它们的通信成本很高,尤其是当设备数量较大时。为了减轻这种情况,提出了基于增量的方法。我们首先为分散的ML引入增量区块坐标下降(I-BCD),这可以以牺牲运行时间为代价降低通信成本。为了加速收敛速度,提出了一种异步并行增量BCD(API-BCD)方法,其中多种设备/代理以异步方式活跃。我们得出所提出方法的收敛性。仿真结果还表明,在运行时间和通信成本方面,我们的API-BCD方法优于艺术状态。
Machine learning (ML) is a key technique for big-data-driven modelling and analysis of massive Internet of Things (IoT) based intelligent and ubiquitous computing. For fast-increasing applications and data amounts, distributed learning is a promising emerging paradigm since it is often impractical or inefficient to share/aggregate data to a centralized location from distinct ones. This paper studies the problem of training an ML model over decentralized systems, where data are distributed over many user devices and the learning algorithm run on-device, with the aim of relaxing the burden at a central entity/server. Although gossip-based approaches have been used for this purpose in different use cases, they suffer from high communication costs, especially when the number of devices is large. To mitigate this, incremental-based methods are proposed. We first introduce incremental block-coordinate descent (I-BCD) for the decentralized ML, which can reduce communication costs at the expense of running time. To accelerate the convergence speed, an asynchronous parallel incremental BCD (API-BCD) method is proposed, where multiple devices/agents are active in an asynchronous fashion. We derive convergence properties for the proposed methods. Simulation results also show that our API-BCD method outperforms state of the art in terms of running time and communication costs.