论文标题

基于图像的脑电图分类对歌曲录音的反应

Image-based eeg classification of brain responses to song recordings

论文作者

Ramirez-Aristizabal, Adolfo G., Ebrahimpour, Mohammad K., Kello, Christopher T.

论文摘要

对脑电图对自然主义声学刺激的响应进行分类至关重要,但是标准方法通过在非常短的声音段(几秒钟或更少)上分别处理单个渠道而受到限制。最近的事态发展表明,通过从脑电图中提取光谱成分并使用卷积神经网络(CNN)来表明音乐刺激的分类(约2分钟)。本文提出了一种有效的方法,将RAW EEG信号映射到收听端到端分类的单个歌曲。 EEG通道被视为[通道X样本]图像图块的维度,并使用CNN对图像进行分类。我们的实验结果(88.7%)与最先进的方法(85.0%)竞争,但是我们的分类任务是通过处理更具知觉质量相似的较长刺激,并且对参与者不熟悉的刺激更具挑战性。我们还使用预先训练的Resnet-50采用了转移学习方案,尽管图像域彼此无关,但仍证实了转移学习的有效性。

Classifying EEG responses to naturalistic acoustic stimuli is of theoretical and practical importance, but standard approaches are limited by processing individual channels separately on very short sound segments (a few seconds or less). Recent developments have shown classification for music stimuli (~2 mins) by extracting spectral components from EEG and using convolutional neural networks (CNNs). This paper proposes an efficient method to map raw EEG signals to individual songs listened for end-to-end classification. EEG channels are treated as a dimension of a [Channel x Sample] image tile, and images are classified using CNNs. Our experimental results (88.7%) compete with state-of-the-art methods (85.0%), yet our classification task is more challenging by processing longer stimuli that were similar to each other in perceptual quality, and were unfamiliar to participants. We also adopt a transfer learning scheme using a pre-trained ResNet-50, confirming the effectiveness of transfer learning despite image domains unrelated from each other.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源