论文标题

高维线性分类中不确定性的理论表征

Theoretical characterization of uncertainty in high-dimensional linear classification

论文作者

Clarté, Lucas, Loureiro, Bruno, Krzakala, Florent, Zdeborová, Lenka

论文摘要

能够不仅能够可靠地评估\ emph {精度},还可以评估模型预测的\ emph {不确定性}在现代机器学习中的重要努力。即使已知生成数据和标签的模型,从有限数量的样本中学习模型后,计算固有的不确定性,等于对相应的后验概率度量进行采样。因此,在高维问题中,这种采样在计算上具有挑战性,而高维度中的启发式不确定性估计器的理论结果很少。在此手稿中,我们表征了从有限数量的高维高斯输入数据和Probit模型产生的标签的样本中学习的不确定性。在这种情况下,贝叶斯的不确定性(即后边缘)可以通过传递算法的近似信息渐近地获得,绕过后部的规范但昂贵的蒙特卡洛采样。然后,我们为逻辑分类器,统计上最佳贝叶斯分类器的不确定性和基础真相概率不确定性之间的联合统计数据提供了封闭式公式。该公式使我们能够从有限量的样本中研究物流分类器学习的校准。我们讨论如何通过适当的正规化来缓解过度自信。

Being able to reliably assess not only the \emph{accuracy} but also the \emph{uncertainty} of models' predictions is an important endeavour in modern machine learning. Even if the model generating the data and labels is known, computing the intrinsic uncertainty after learning the model from a limited number of samples amounts to sampling the corresponding posterior probability measure. Such sampling is computationally challenging in high-dimensional problems and theoretical results on heuristic uncertainty estimators in high-dimensions are thus scarce. In this manuscript, we characterise uncertainty for learning from limited number of samples of high-dimensional Gaussian input data and labels generated by the probit model. In this setting, the Bayesian uncertainty (i.e. the posterior marginals) can be asymptotically obtained by the approximate message passing algorithm, bypassing the canonical but costly Monte Carlo sampling of the posterior. We then provide a closed-form formula for the joint statistics between the logistic classifier, the uncertainty of the statistically optimal Bayesian classifier and the ground-truth probit uncertainty. The formula allows us to investigate calibration of the logistic classifier learning from limited amount of samples. We discuss how over-confidence can be mitigated by appropriately regularising.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源