论文标题
预测环境数据:地面臭氧浓度表面的一个例子
Forecasting Environmental Data: An example to ground-level ozone concentration surfaces
论文作者
论文摘要
环境问题正在受到社会经济和健康研究的越来越多的关注。反过来,这促进了许多相关现实生活过程的记录和数据收集的进步。可用的数据处理工具通常被发现过于限制,因为它们没有说明此类数据集的丰富性质。在本文中,我们提出了一个关于随着时间的依次收集的预测空间环境数据的新统计观点。我们将此数据集视为具有复杂地理领域的表面(功能)时间序列。通过采用功能数据分析的新技术,我们开发了一种新的预测方法。我们的方法包括两个步骤。在第一步中,通过使用有限元样条更平滑在某些空间结构域上采样的测量结果,将表面的时间序列重建。在第二步中,我们调整动态功能因子模型以预测表面时间序列。这种方法的优点是,我们可以同时考虑和探索数据中的空间和时间依赖性。对德国地理领域的地面臭氧浓度的预测研究证明了这种新观点的实际价值,我们将方法与标准功能基准模型进行了比较。
Environmental problems are receiving increasing attention in socio-economic and health studies. This in turn fosters advances in recording and data collection of many related real-life processes. Available tools for data processing are often found too restrictive as they do not account for the rich nature of such data sets. In this paper, we propose a new statistical perspective on forecasting spatial environmental data collected sequentially over time. We treat this data set as a surface (functional) time series with a possibly complicated geographical domain. By employing novel techniques from functional data analysis we develop a new forecasting methodology. Our approach consists of two steps. In the first step, time series of surfaces are reconstructed from measurements sampled over some spatial domain using a finite element spline smoother. In the second step, we adapt the dynamic functional factor model to forecast a surface time series. The advantage of this approach is that we can account for and explore simultaneously spatial as well as temporal dependencies in the data. A forecasting study of ground-level ozone concentration over the geographical domain of Germany demonstrates the practical value of this new perspective, where we compare our approach with standard functional benchmark models.