论文标题

随机多项式混乱扩展以模拟随机模拟器

Stochastic polynomial chaos expansions to emulate stochastic simulators

论文作者

Zhu, X., Sudret, B.

论文摘要

在不确定性量化的背景下,需要重复评估计算模型。对于昂贵的数值模型,此任务非常棘手。对于随机模拟器而言,这样的问题变得更加严重,对于给定的一组输入参数,其输出是一个随机变量。为了减轻计算负担,通常对替代模型进行构建和评估。但是,由于模型响应的随机性质,经典替代模型不能直接应用于随机模拟器的仿真。为了有效地表示任何给定输入值的模型输出的概率分布,我们开发了一个新的随机替代模型,称为随机多项式混乱。为此,我们在定义明确的输入变量的顶部引入了一个潜在变量和一个附加的噪声变量,以重现随机性。结果,对于给定的一组输入参数,模型输出由带有添加剂噪声的潜在变量的函数给出,因此是一个随机变量。在本文中,我们提出了一种自适应算法,该算法不需要对相同输入参数的模拟器重复运行。将所提出的方法的性能与广义Lambda模型和最先进的内核估计器进行了比较,该估计量在数学金融和流行病学的两个案例研究中,以及一个分析示例,其响应分布是双峰的。结果表明,所提出的方法能够准确地表示一般响应分布,即不仅是正常或单峰分布。在准确性方面,它通常胜过广义Lambda模型和内核密度估计器。

In the context of uncertainty quantification, computational models are required to be repeatedly evaluated. This task is intractable for costly numerical models. Such a problem turns out to be even more severe for stochastic simulators, the output of which is a random variable for a given set of input parameters. To alleviate the computational burden, surrogate models are usually constructed and evaluated instead. However, due to the random nature of the model response, classical surrogate models cannot be applied directly to the emulation of stochastic simulators. To efficiently represent the probability distribution of the model output for any given input values, we develop a new stochastic surrogate model called stochastic polynomial chaos expansions. To this aim, we introduce a latent variable and an additional noise variable, on top of the well-defined input variables, to reproduce the stochasticity. As a result, for a given set of input parameters, the model output is given by a function of the latent variable with an additive noise, thus a random variable. In this paper, we propose an adaptive algorithm which does not require repeated runs of the simulator for the same input parameters. The performance of the proposed method is compared with the generalized lambda model and a state-of-the-art kernel estimator on two case studies in mathematical finance and epidemiology and on an analytical example whose response distribution is bimodal. The results show that the proposed method is able to accurately represent general response distributions, i.e., not only normal or unimodal ones. In terms of accuracy, it generally outperforms both the generalized lambda model and the kernel density estimator.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源