论文标题

LEDNET:在黑暗中关节浅灯增强和脱毛

LEDNet: Joint Low-light Enhancement and Deblurring in the Dark

论文作者

Zhou, Shangchen, Li, Chongyi, Loy, Chen Change

论文摘要

夜间摄影通常由于昏暗的环境和长期使用而遭受弱光和模糊的问题。尽管现有的光增强和脱毛方法可以单独解决每个问题,但一系列此类方法不能和谐地奏效,可以很好地应对可见性和纹理的共同退化。训练端到端网络也是不可行的,因为没有配对数据可以表征低光和模糊的共存。我们通过引入新的数据合成管道来解决该问题,该管道对现实的低光模糊降解进行建模。使用管道,我们介绍了第一个用于关节低光增强和脱毛的大规模数据集。数据集(LOL-BLUR)包含12,000个低Blur/正常出现的对,在不同的情况下具有不同的黑暗和运动模糊。我们进一步提出了一个名为LEDNET的有效网络,以执行关节弱光增强和脱毛。我们的网络是独一无二的,因为它是专门设计的,目的是考虑两个相互连接的任务之间的协同作用。拟议的数据集和网络都为这项具有挑战性的联合任务奠定了基础。广泛的实验证明了我们方法对合成和现实数据集的有效性。

Night photography typically suffers from both low light and blurring issues due to the dim environment and the common use of long exposure. While existing light enhancement and deblurring methods could deal with each problem individually, a cascade of such methods cannot work harmoniously to cope well with joint degradation of visibility and textures. Training an end-to-end network is also infeasible as no paired data is available to characterize the coexistence of low light and blurs. We address the problem by introducing a novel data synthesis pipeline that models realistic low-light blurring degradations. With the pipeline, we present the first large-scale dataset for joint low-light enhancement and deblurring. The dataset, LOL-Blur, contains 12,000 low-blur/normal-sharp pairs with diverse darkness and motion blurs in different scenarios. We further present an effective network, named LEDNet, to perform joint low-light enhancement and deblurring. Our network is unique as it is specially designed to consider the synergy between the two inter-connected tasks. Both the proposed dataset and network provide a foundation for this challenging joint task. Extensive experiments demonstrate the effectiveness of our method on both synthetic and real-world datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源