论文标题

大规模的个性化视频游戏推荐通过社交感知的上下文化图形神经网络

Large-scale Personalized Video Game Recommendation via Social-aware Contextualized Graph Neural Network

论文作者

Yang, Liangwei, Liu, Zhiwei, Wang, Yu, Wang, Chen, Fan, Ziwei, Yu, Philip S.

论文摘要

由于如今可用的在线游戏,在线游戏推荐系统对于用户和在线游戏平台来说是必需的。前者可以发现更多潜在的在线游戏,而后者可以吸引用户在平台中停留更长的时间。本文研究了蒸汽平台上的在线游戏的用户行为的特征。根据观察结果,我们认为在线游戏令人满意的推荐系统能够表征:个性化,游戏上下文化和社交连接。但是,对于游戏推荐,同时解决所有问题都是具有挑战性的。首先,游戏推荐的个性化需要纳入参与游戏的住宅时间,这些时间在现有方法中被忽略。其次,游戏上下文化应反映这些关系的复杂和高阶属性。最后但并非最不重要的一点是,由于社交联系中的巨大噪音,直接将社交联系直接用于游戏建议是有问题的。为此,我们提出了一个社会意识的上下文化图神经推荐系统(SCGREC),该系统利用了三种观点来改善游戏建议。我们对用户的在线游戏行为进行了全面分析,这激发了在线游戏推荐中处理这三个特征的必要性。

Because of the large number of online games available nowadays, online game recommender systems are necessary for users and online game platforms. The former can discover more potential online games of their interests, and the latter can attract users to dwell longer in the platform. This paper investigates the characteristics of user behaviors with respect to the online games on the Steam platform. Based on the observations, we argue that a satisfying recommender system for online games is able to characterize: personalization, game contextualization and social connection. However, simultaneously solving all is rather challenging for game recommendation. Firstly, personalization for game recommendation requires the incorporation of the dwelling time of engaged games, which are ignored in existing methods. Secondly, game contextualization should reflect the complex and high-order properties of those relations. Last but not least, it is problematic to use social connections directly for game recommendations due to the massive noise within social connections. To this end, we propose a Social-aware Contextualized Graph Neural Recommender System (SCGRec), which harnesses three perspectives to improve game recommendation. We conduct a comprehensive analysis of users' online game behaviors, which motivates the necessity of handling those three characteristics in the online game recommendation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源