论文标题

实验结果的概括中的灵敏度分析

Sensitivity Analysis in the Generalization of Experimental Results

论文作者

Huang, Melody

论文摘要

随机对照试验(RCT)允许研究人员在实验样本中估计具有最低识别假设的实验样本的因果影响。但是,要概括或运输从RCT到目标人群的因果效应,研究人员必须调整一组治疗效应主持人。实际上,不可能知道是否正确考虑了一组主持人。在下文中,我提出了三个参数灵敏度分析,用于使用加权估计器概括或运输实验结果,与现有方法相比具有多个优点。首先,该框架不需要对实验样本选择机制或治疗效应异质性的基础数据生成过程的假设。其次,我表明,确保敏感性参数是有限的,并提出了一些研究人员可以用来执行灵敏度分析的工具:(1)研究人员的图形和数值摘要,以评估一个对杀手混杂因素的稳健估计的稳健估计; (2)极端情况分析; (3)一种正式的基准方法,用于研究人员使用现有数据估算潜在灵敏度参数值。最后,我证明了所提出的框架可以很容易地扩展到双重强大的增强加权估计器的类别。灵敏度分析框架应用于一组工作培训计划实验。

Randomized controlled trials (RCT's) allow researchers to estimate causal effects in an experimental sample with minimal identifying assumptions. However, to generalize or transport a causal effect from an RCT to a target population, researchers must adjust for a set of treatment effect moderators. In practice, it is impossible to know whether the set of moderators has been properly accounted for. In the following paper, I propose a three parameter sensitivity analysis for generalizing or transporting experimental results using weighted estimators, with several advantages over existing methods. First, the framework does not require assumptions on the underlying data generating process for either the experimental sample selection mechanism or treatment effect heterogeneity. Second, I show that the sensitivity parameters are guaranteed to be bounded and propose several tools researchers can use to perform sensitivity analysis: (1) graphical and numerical summaries for researchers to assess how robust a point estimate is to killer confounders; (2) an extreme scenario analysis; and (3) a formal benchmarking approach for researchers to estimate potential sensitivity parameter values using existing data. Finally, I demonstrate that the proposed framework can be easily extended to the class of doubly robust, augmented weighted estimators. The sensitivity analysis framework is applied to a set of Jobs Training Program experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源