论文标题
vaidya型时空,没有奇异性
A Vaidya-type spacetime with no singularities
论文作者
论文摘要
在这项工作中提出了定期的vaidya型线元素。质量函数既取决于时间和空间坐标。曲率不变性和源应力张量$ t^{a} _ {〜b} $在整个空间中都是有限的。如果$ k^{2} <2vr $,满足$ t^{a} _ {〜b} $的能量条件,其中$ k $是一个正常数,$ v,r $是坐标。发现径向压力的最大值非常接近$ r = 2m〜(r> 2m),v = 2m $。穿越恒定半径的球的能量类似于Lundgren-Schmekel-york式准能量。牛顿的加速度加速度的大地测量学有一个额外的术语(与Piesnack和Kassner的结果相比),这会导致拒绝效果。
A regular Vaidya-type line-element is proposed in this work. The mass function depends both on the temporal and the spatial coordinates. The curvature invariants and the source stress tensor $T^{a}_{~b}$ are finite in the whole space. The energy conditions for $T^{a}_{~b}$ are satisfied if $k^{2}<2vr$, where $k$ is a positive constant and $v,r$ are coordinates. It is found that the radial pressure has a maximum very close to $r = 2m~ (r>2m), v = 2m$. The energy crossing a sphere of constant radius is akin to Lundgren-Schmekel-York quasilocal energy. The Newtonian acceleration of the timelike geodesics has an extra term (compared to the result of Piesnack and Kassner) which leads to rejecting effects.