论文标题

vaidya型时空,没有奇异性

A Vaidya-type spacetime with no singularities

论文作者

Culetu, Hristu

论文摘要

在这项工作中提出了定期的vaidya型线元素。质量函数既取决于时间和空间坐标。曲率不变性和源应力张量$ t^{a} _ {〜b} $在整个空间中都是有限的。如果$ k^{2} <2vr $,满足$ t^{a} _ {〜b} $的能量条件,其中$ k $是一个正常数,$ v,r $是坐标。发现径向压力的最大值非常接近$ r = 2m〜(r> 2m),v = 2m $。穿越恒定半径的球的能量类似于Lundgren-Schmekel-york式准能量。牛顿的加速度加速度的大地测量学有一个额外的术语(与Piesnack和Kassner的结果相比),这会导致拒绝效果。

A regular Vaidya-type line-element is proposed in this work. The mass function depends both on the temporal and the spatial coordinates. The curvature invariants and the source stress tensor $T^{a}_{~b}$ are finite in the whole space. The energy conditions for $T^{a}_{~b}$ are satisfied if $k^{2}<2vr$, where $k$ is a positive constant and $v,r$ are coordinates. It is found that the radial pressure has a maximum very close to $r = 2m~ (r>2m), v = 2m$. The energy crossing a sphere of constant radius is akin to Lundgren-Schmekel-York quasilocal energy. The Newtonian acceleration of the timelike geodesics has an extra term (compared to the result of Piesnack and Kassner) which leads to rejecting effects.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源